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Variational methods for complex eigenfrequencies 
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Department of Physics and Astrophysics, University of Delhi, Delhi-1 10007, India 

Received 19 July 1978, in final form 4 April 1979 

Abstract. Variational expressions have been developed for the complex normal-mode 
frequencies occuring in a variety of physical systems including laboratory and solar plasmas 
as well as cosmic space. 

1. Introduction 

The initial growth of instabilities occurring in various plasmas and cosmic situations is 
often investigated by taking Fourier-Laplace transforms of linearised equations of 
motion (Vithal and Tandon 1972, 1973, Cap 1976, Vithal 1977a, b). The solution to 
these equations yields complex eigenfrequencies, the imaginary parts of which deter- 
mine the growth rates for the unstable modes. 

However, if the equations of motion result from a second-order Lagrangian system, 
the equation for a normal mode reduces to 

(u’P-~uR -Q)a = O  

where P and 0 are real, symmetric matrices and R is imaginary and antisymmetric. 
When the normal-mode frequency is real, Low (1961) found it using the variational 
method. Lava1 et a1 (1964) extended Low’s work to a marginally stable situation in the 
vicinity of the system with real normal-mode frequencies. Later, Barston (1970) 
studied the systems with imaginary frequencies and found the maximum growth rate of 
an unstable system to be the least upper bound of a certain functional in the form of a 
variational expression. Nevertheless, it is still of interest to construct a variational 
principle for the complex normal-mode frequency which would yield this mode at a 
stationary point. The method is described in § 2 and illustrated with a simple appli- 
cation to the study of plasma oscillations in a one-dimensional one-component plasma 
in Q 3. 

Lin and Lau (1976) have reported that complex eigenfrequencies may also occur 
when R is real and symmetric. In that case a simplified method leads to a variational 
expression for the eigenvalue as discussed in § 4 where it is also illustrated with an 
example based on the Klein paradox (Klein 1929) in the relativistic wave equation for a 
scalar particle. 

Finally, in 0 5 a non-holonomic variational principle is presented. 
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64 K L Vithal 

2. Conservative second-order systems 

2.1. Formulation 

The equation for a normal mode of a second-order Lagrangian system is 

(w2P - 2 w R  - Q)(Y = A(w)a = 0, (1) 
where P and Q are real, symmetric matrices and R is imaginary and antisymmetric. 
Hence P, Q and R are all self-adjoint. Thus, for any allowed frequency o, -w and fw" 
will also be allowed, since the determinantal equation det A = 0 can be transposed, 
turning w into -w,  and then 'complex conjugated', turning -w into 0". 

It should be noted that if a is a solution of equation (l), and P is any vector, then 

w 2 ( P ,  Pa) - 2w (P, Ra)  - (P, Qa) = 0 ( 2 )  
where ( x ,  t )  = X i  x ? t i  is Hermitian, ( , ) being the usual inner product defined over the 
region of interest, so that 

Similar@, if & is a solution of the equation 

and P is any vector, then 

w2(&,  P/3)-20(6, RP)-(6, Q P ) = O .  ( 5 )  

From equation ( 5 ) ,  for any P, we have 

2.1.1. If the Lagrangian system possesses a time-reversal invariance, a matrix U gives 
the corresponding transformation. Thus, if there exists the matrix (+ which commutes 
with P and Q and anticommutes with R, then it is obvious that 

& =(+:a** (7) 
We can now construct a variational principle for the frequency: evidently, the quantity 

is stationary for a to be a solution of equation (1) and & = ua", as shown by equations 
(3) and (6). 

The converse is, however, less obvious. Assuming @ to be stationary, we obtain 

where P = (6, Pa),  etc. Combining terms, we have 

0 = @'SP - 2@SR - sa. 

SQ = (66, Qa) + (6, Q S a )  = (Sa, u Q Q ) ~  +(a,  u Q S ~ ) ~  

(10) 

(1 1) 
Now 
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where ( , ) denotes a real inner product. Thus 

SO = (Sa, [aQ + ( c ~ Q ) ~ ] c ~ ) a  = ( ~ a ,  ( c ~ + ~ ~ ) Q a ) a  

where aT is the transpose of a. Similarly 

SP = (Sa, (a  + aT)Pa)a 

and 

SE = (Sa, [aR + ( ~ R ) ~ ] a ) a  = (Sa, [vR - ( R ~ ) ~ ] a ) a  

= (Sa, (aR - a T R T ) a ) ~  = (Sa, (a + a T ) R a ) ~ .  

Thus from equations (10) and (12)-(14) we have 

(Sa, ( a + a T ) ( a 2 P - 2 @ R  -a)&), = O  

or 

(a  + aT)(a2P -2aR - Q)a == 0. 

Provided a + aT has an inverse, this shows that 

( a 2 P  - 2QR - Q)a = 0 

and the expression (8) is fully variational. 

2.1.2. Now, suppose that there is no such matrix U with the desired properties. In this 
case, evidently, the transformation from a to (Y' requires in some way a separation of 
odd powers of R from even powers which can be done by enlarging the vector space. To 
do this a 2 x 2 matrix a1 = (? i) is added, doubling the number of components, and 
instead of equation ( 1 )  a new equation 

(w2P - 2wRal- Q)P = 0 (17) 
is written. Evidently, equation (17) allows the required transformation with U of 
equation ( 7 )  given by 

u 3 = ( I  0 -1 O ) .  

Hence p" = a&* satisfies the equation 

( w * ~ P -  2 w " a l R  - Q)b= 0 

provided p satisfies equation (17). Thus our variational principle holds for P with 

Now we need merely prove that if P satisfies equation (17) we can write solutions of 
equation ( 1 )  with the same frequency, and vice versa. Let 

( W ~ P - - ~ W R ~ ~ - Q ) ( ' ~ )  P 2  =0, (20) 

or 
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and 
(o’P - Q ) P 2  = 2wRP1. 

Then a = + p 2  satisfies equation ( 1 )  so that w is an allowed frequency of equation ( 1 ) .  
Conversely, let 

(w2P - 2wR - Q)LY = 0. 

We know that an a’ must exist, since if w is an allowed frequency of ( 1 )  so is -W.  Thus 

(w2P + 2 0 R  - Q)a‘ = 0. 

p 1 = p a  f u a ’  

pz = pa - va ‘ 

Then 

and 

clearly satisfy equation (20)  with arbitrary p, U. The arbitrariness of p and v cor- 
responds to the invariance of equation (17)  under transformations of the form E + F u l .  
Any p = (PI, p2) is satisfactory for use in the variational principle (20)  except 

p1= p2 = cY(v = O),  or p 1 =  - p 2  = a’(/L = O), 
since for those two choices our equation (19)  for @becomes indeterminate. As for say 
(v = 01, 

so that this choice of p as a trial expression must be avoided. 

2.2. Discussion 

2.2.1. There are obviously no positivity properties to be expected from this variational 
expression. Nevertheless, we give an interesting relation for the second variation of @. 

Supposing Po to be a solution of equation (17) ,  we obtain 

P = ( B o ,  PPO) + ( B o ,  Pap)  + (86, W O ) +  (8B, Pap) (26)  
with similar expressions for 0 and R. 

From equations ( 2 )  and ( 5 )  we know that @(p)  calculated with the first three terms of 
(26)  is independent of Sp. Hence the only contribution to the second variation of will 
be from the second variations of P, d and 8. Analogous to equation (9) ,  it will be given 
by 

( ( @ 2 8 z P - 2 @ 6 2 R  -8”) Jil 82@= - - - 
2 P [ ( R / P ) 2  + (R/P)11’2 

with 
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2.2.2. We know that in problems with translational invariance the wavenumber basis 
diagonalises the dependence upon spatial coordinates. In this basis the variational 
expression is slightly modified by the procedure illustrated below for one coordinate. 

Let 

(28) 
1 

a ( k ) = ~ [  (2.n) exp(-iky)a(y)dy 

and 

where the labels for other degrees of freedom have been suppressed and T(y, y’) = 
r(y - y’) refer to P, R or Q. The hermiticity and symmetry/antisymmetry properties of 
P, Q and R in the original coordinate basis can now be expressed as 

P ( k )  = P T ( - k )  = P * ( - k ) ,  

Q ( k )  = QT(-k)= Q * ( - k ) ,  

and 

R ( k )  = -RT(-k)  = -R*(-k) .  

The expression defining & can be written, as in equation (7), as 

& ( k )  = U + a * ( k )  

u P ( k )  = P ( - k ) u ,  

d ( k )  = Q(-~)(T, 

where 

and 

uR ( k  ) = - R (- k ) u .  

If the matrix (+ cannot be found in the original space it can be constructed in a manner 
similar to that described earlier in this section. To do this one begins by dividing the 
operators P, Q and R into parts that are even and odd under k -+ - k  here as 

P ( k )  = P e ( k ) + P o ( k ) ,  
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and 

The related eigensolutions of the original problem are now reconstructed from p1 and 
P Z  in accordance with 

a ( k ) = P i ( k ) + P z ( k )  ( 3 4 )  

corresponding to a frequency w and wavenumber k, 

a ’ ( k )  = P i ( k ) - P z ( k )  

corresponding to a frequency -U and wavenumber -k ,  

a * ( k )  = P ? ( k ) + B T ( k )  

( 3 5 )  

( 3 6 )  

corresponding to a frequency -w* and wavenumber -k ,  and 

a ’ * ( k )  = P T ( k )  --PT ( k )  ( 3 7 )  

corresponding to a frequency w * and wavenumber k.  

3. Plasma oscillations 

As an illustration consider a homogeneous one-dimensional one-component plasma 
undergoing small oscillations in the presence of a self-induced field. The equation for 
small displacements y ( k ,  v )  of the plasma having a frequency w and wavenumber k is 

m 1- m 

2 
(w  - k v )  y d v ’ y ( k ,  v’)f(v’) 

where w i  = 4.rmz2e2/m is the square of the plasma frequency andf is the unperturbed 
velocity distribution function. The exact solution is 

y = (w - kv)-’ ( 3 9 )  
when 

On a Hermitian basis y  ̂ = y f 1 l 2  the equation for y^ becomes 
m 

w2y^ - 2 w k v f  + [ (kv)’? - w p f  2 1 / 2  (U) d~’[f(v’)]~/’y^(u’) 

The term linear in w has been made real by the unitary transformation. The general 
treatment of the problem in the wavenumber basis is not required in such an elementary 
example as this, since it is evident that the solutions for w and w *  are merely complex 
conjugate pairs at the same real value of k.  Thus the operator cr in (32 )  may be replaced 
by the identity, since P and Q are even in k and R = kv is odd in this example. 
Although the system under consideration is not necessarily invariant under time- 
reversal, it is invariant under time and space inversion and so the condition for the 
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existence of CT is realised. The expectation values appearing in the variational expres- 
sion are then given by 

P =  I y2f dv, (41) 

I? = kvy’f dv (43) J 
where no complex conjugation appears, even though y may in general be complex. 

We may try 

y = (6 - kV)-’ (44) 

as the trial expression for y where 6 is a complex variational parameter. 
The stationary point of the variational expression 

- 2 - 1/2 I? +;I 
P 

is determined by direct differentiation from 

0 = @p‘([) -2@I?’(5) - O’(6) 

(45) 

where the primes refer to differentiation with respect to 6. The above condition on the 
integrals in equations (41)-(43) is actually satisfied by the integrand in v itself, namely 

provided that @ = [ = U ,  where w satisfies equation (38). Thus the exact solution is 
recovered at the stationary point, and the variational principle gives the correct 
dispersion relation. It is rather interesting that the above example also succeeds when 
the oscillations are stable and damped. In the general case variations in 5 are restricted 
to the Riemann sheet cut along Im 5 = 0 as the integrals in equations (41)-(43) are 
undefined on the real axis in 6. If the contour integrals in~v are distorted analytically as 6 
crosses the real axis, complex solutions on the second sheet in w can be reached and 
correspond to stationary points of the variational expression, even though the operators 
P, Q and R are not all Hermitian along such distorted contours. Since the variational 
expression (8) depends on a and not a *, it may be analytic in the variational parameters 
defining a,  if a itself is analytic in these parameters. Thus the possibility of analytic 
continuation should exist in a general application. 

4. Non-conservative second-order systems 

If in equation (1) R is real and symmetric along with P and Q, the eigenfrequencies may 
still be complex. It is then trivial to formulate a variational principle for the eigenvalues. 
To each eigenfrequency w and eigenvector a, there corresponds an eigenfrequency U* 

and eigenvector a*. Hence equation (7) reduces simply to 
0; =a* 
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so that the matrix elements in expression (8) become simply real inner products in the 
notation (11). For instance 

(48) 

As an illustration of the use of this variational principle in a non-conservative system, 
we consider the Klein-Gordon equation for a massive particle of charge e moving in a 
strongly attractive Coulomb potential which reads as 

(6, Ra) = (a,  Ra)w. 

[ (w  - v12-p2- m2]$ = o 
where 

v = -re2/r, 

p2 = p: + 1(1+ 1)/r2, 

(49) 

1 a2 
P o = - - -  r ar2r. 

The exact solution to this problem is easily found by considering a similar non- 
relativistic situation represented by 

which can be obtained from equation (49) with the substitution 

w = mo, 

i(i + 1) - z2e4 = io(io+ 1) 

and 

(wZ-m2)/2w = E .  (53) 

Hence we are led to consider solutions for non-relativistic motion in a Coulomb 
potential with stationary mass mo and angular momentum lo. Since equation (52) gives 
complex values for 10 when z is sufficiently large, complex eigenvalues w are expected. 
In the Hilbert space of normalisable states the usual discrete spectrum for E occurs, as 

1 z2e4m0 
2 ( lo+ &)* ' E = - - -  (54) 

$r+m - exp(-Xr); $ r + O  - ,lo, X' = -2moe ( 5 5 )  

where n, = 1, 2 , .  . . is the radial quantum number. The sign of 2 is chosen so that 
Re  %> 0, since for the boundary condition at the origin Re  lo 3 -1 permits a normalis- 
able wavefunction. It is conventional to define current and charge densities as 

J = Re($*i-lV$) 

and 

p = Re[$*(w - V)$]. 

The condition for a finite flux through a surface around the origin is Re lo B -4. Under 
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these conditions the eigenfrequencies are found from equations (51), (53) and (54) as 

when 
2 4 1 / 2  . 10 = -;+f[1+41(1 + 1)-4z e ] 

The eigenfrequencies are complex when 

z 2 e 4 2  1(1+ 1) +f  (58 )  

and now occur in complex conjugate pairs corresponding to 

(59) 1 -  o -  -2ffi[4z2e4-41(1+1)-1]1/2. 1 

Normally the current and charge densities defined by equations (56) satisfy the 
conservation law 

V .  J + 2 ( I m w ) p = O  (60) 
for all r as a result of $’s satisfying equation (50). However, when Re  10 = -4, i.e. when 
the eigenfrequency becomes complex, the conservation law fails at the origin r = 0. The 
usual derivation of current conservation breaks down as 

v ($*V4 - *V**) # **v2* - $V2**. (61) 

The behaviour of J at the origin is given by 

Jr+o - f / r 2 .  

Thus the left-hand side of inequality (61) contains a S function singularity at the origin 
but the right-hand side does not. Ordinarily in quantum mechanics, these states would 
be excluded from the physical Hilbert space for this reason. In the relativistic wave 
equation they correspond to an instability of the vacuum caused by the strong potential 
at the origin, in complete analogy with that of the Klein paradox in the Dirac equation 
(Klein 1929). We are of course interested in keeping these complex eigenmodes in the 
present example. Depending on the sign of Im U,  the solutions with complex eigen- 
frequency may be interpreted as representing an incoming charge with a decreasing 
amplitude and a sink at the origin or an escaping charge with a growing amplitude and a 
source at the origin. 

As a test of the variational principle we consider the solution for 1 = 0, n, = 1.  The 
exact solution is given by 

JI = Dr‘O exp(-rr) (63) 
where 

and D is an irrelevant normalisation constant. We take fi from equation (63) to be the 
trial function with 5 as a complex variational parameter. The matrix elements in 
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equation (8) are given by the real inner products 

CO 2 

I?(,$)={ o r  (=)$'r2dr, 

so that 

c ~ t )  = d t  * (-16' + m 2 Y ,  
where 

4 = - -ze2/( lo+ I) ,  

y=Cp2+1. 

The stationary point in @ occurs at 

6 0  = y1/2 

and 

when 

@(to) = *m/[l +z2e4/( /o+ I ) ~ ] ~ " .  (68) 
The choices of sign in equations (66)-(68) are correlated. The results (67) and (68) 
agree exactly with (64) and (65). 

5. Non-holonomic variational expression for Im w 

Consider again the equation 

(w 'P-2wR-Q)a  5 0  

with R imaginary and w complex. 
We note as in Low (1961) that if a satisfies equation ( l ) ,  then 

is stationary for real values of U ,  but not for complex ones. Also, if the square root is 
imaginary, it gives the imaginary part of w as 

provided the argument of the square root is negative, and the inner product is 
Hermitian. 

The stationary quantity for complex w is in fact 
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with the non-integrable constraint 

To see this, let us consider 

SA=S{-7-q+SR?jr+?. 2R2  - 2 R  SQ 
P3 P2 P P  

On the other hand, for a to be a solution of equation (l), 

( & Y , ~ ~ P L Y - ~ U R L Y - Q C Y ) = O  

and 

w*’(LY, P ~ L Y ) - ~ u * ( ~ ,  RSa)-(a,  QSLY)=O 

so that on adding (73) and (74), we obtain 

(w-w*) {4 (w +w*)[(SLY, Pa) - (&,  PSLY)]-[(sa,Ra)-(a,RSLY)]} 

+ I ( w  + w * 2)SP - (0 + w *)SI? - S Q  = 0. 

(73) 

(74) 

(75) 
Using equation (69), and remembering that the square root is imaginary, we see that the 
coefficient of w - w *  vanishes by virtue of equation (71). The remainder is just -I%A. 

This expression is evidently of considerably less significance than the one Jescribed 
in § 2,  as 

(i) the converse does not hold, i.e. A can be stationary for all variations subject to 
the constraints without cy being a solution of equation (l), and 

(ii) the constraint itself is non-holonomic, and hence, awkward to meet. 
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